Cyclone

Solids-gas separation according to Muschelknautz

cyclone

Constant geometric parameters

\[r_{o} = 0.5d_{o}\]
\[r_{f} = 0.5d_{f}\]
\[r_{exit} = 0.5d_{exit}\]
\[\begin{split}b_{e} = \begin{cases} \text{user-defined} & \text{rect slot, full/half spiral entry} \\ r_{o} - r_{core} & \text{axial entry} \end{cases}\end{split}\]
\[\begin{split}r_{e} = \begin{cases} r_{o} - 0.5b_{e} & \text{rect slot, axial entry} \\ r_{o} + 0.5b_{e} & \text{full spiral entry} \\ r_{o} & \text{half spiral entry} \\ \end{cases}\end{split}\]
\[{\overline{r}}_{con} = 0.5\left( r_{o} + r_{exit} \right)\]
\[\begin{split}r_{exit,eff} = \begin{cases} r_{f} & r_{exit} \leq r_{f} \\ r_{exit} & r_{exit} > r_{f} \\ \end{cases}\end{split}\]
\[\beta = \frac{b_{e}}{r_{o}}\]
\[h_{con} = h_{tot} - h_{cyl}\]
\[h_{con,eff} = \left( \frac{r_{o} - r_{exit,eff}}{r_{o} - r_{exit}} \right)h_{con}\]
\[h_{sep} = h_{cyl} + h_{con,eff} - h_{f}\]
\[\begin{split}a = \begin{cases} \text{-} & \text{rect slot, full/half spiral entry} \\ \sin(\delta)\frac{\pi\left( r_{o} + r_{core} \right)}{N_{b}} - d_{b} & \text{axial entry} \\ \end{cases}\end{split}\]
\[A_{cyl} = 2\pi r_{o}h_{cyl}\]
\[A_{con} = \pi\left( r_{o} + r_{exit,eff} \right)\sqrt{h_{con,eff}^{2} + \left( r_{o} - r_{exit,eff} \right)^{2}}\]
\[A_{top} = \pi r_{o}^{2} - \pi r_{f}^{2}\]
\[A_{f} = 2\pi r_{f}h_{f}\]
\[\begin{split}A_{tot} = \begin{cases} A_{cyl} + A_{con} + A_{f} + A_{top} & \text{rect slot, axial entry} \\ A_{cyl} + A_{con} + A_{f} + A_{top} - \varepsilon r_{o}h_{e} & \text{full/half spiral entry} \\ \end{cases}\end{split}\]
\[A_{con/2} = \pi\left( r_{o} + {\overline{r}}_{con} \right)\sqrt{\left( \frac{h_{con}}{2} \right)^{2} + \left( r_{o} - {\overline{r}}_{con} \right)^{2}}\]
\[A_{sed} = A_{cyl} + A_{con/2}\]
\[A_{e1} = \frac{2\pi r_{o}h_{e}}{2}\]
\[\begin{split}A_{sp} = \begin{cases} \text{-} & \text{rect slot, axial entry} \\ \varepsilon\left( \frac{b + 2r_{o}}{2}\left( b_{e} + h_{e} \right) \right) & \text{full spiral entry} \\ \varepsilon r_{o}\left( b_{e} + h_{e} \right) & \text{half spiral entry} \\ \end{cases}\end{split}\]

Operational parameters

\[{\dot{V}}_{in,g} = \frac{{\dot{m}}_{in,g}}{\rho_{g}}\]
\[\mu_{in} = \frac{{\dot{m}}_{in,s}}{{\dot{m}}_{in,g}}\]
\[\begin{split}\lambda_{s} = \begin{cases} \lambda_{0}\left( 1 + 2\sqrt{\mu_{in}} \right) & \mu_{in} \leq 1 \\ \lambda_{0}\left( 1 + 3\sqrt{\mu_{in}} \right) & \mu_{in} > 1 \\ \end{cases}\end{split}\]
\[\begin{split}\alpha = \begin{cases} \frac{1}{\beta}\left( 1 - \sqrt{1 + 4\left\lbrack \left( \frac{\beta}{2} \right)^{2} - \left( \frac{\beta}{2} \right) \right\rbrack\sqrt{1 - \frac{1 - \beta^{2}}{1 + \mu_{in}}\left( 2\beta - \beta^{2} \right)}} \right) & \text{rect slot, full/half spiral entry} \\ \begin{cases} 0.85 & \text{simple straight blades} \\ 0.95 & \text{curved blades} \\ 1.05 & \text{curved and twisted blades} \\ \end{cases} & \text{axial entry} \\ \end{cases}\end{split}\]

Geometric parameters

\[{\overline{r}}_{e} = r_{o} - \frac{\alpha b_{e}}{2}\]
\[{\overline{r}}_{z} = \sqrt{{\overline{r}}_{e}{\overline{r}}_{con}}\]

Velocities

\[\begin{split}v_{e} = \begin{cases} {\dot{V}}_{in,g}/\left( b_{e}h_{e} \right) & \text{rect slot, full/half spiral entry} \\ {\dot{V}}_{in,g}/\left( ab_{e}N_{b} \right) & \text{axial entry} \\ \end{cases}\end{split}\]
\[w_{50} = \frac{0.5\left( 0.9{\dot{V}}_{in,g} \right)}{A_{sed}}\]
\[\begin{split}u_{o} = \begin{cases} \frac{v_{e}\frac{r_{e}}{r_{o}}}{\alpha} & \text{rect slot entry} \\ \frac{v_{e}\frac{r_{e}}{r_{o}}}{1 + \frac{\lambda_{s}}{2}\frac{A_{sp}}{{\dot{V}}_{in,g}}v_{e}\sqrt{\frac{r_{e}}{r_{o}}}\ } & \text{full/half spiral entry} \\ \frac{v_{e}\cos(\delta)\frac{r_{e}}{r_{o}}}{\alpha} & \text{axial entry} \\ \end{cases}\end{split}\]
\[u_{f} = \frac{u_{o}\frac{r_{o}}{r_{f}}}{1 + \frac{\lambda_{s}}{2}\frac{A_{tot}}{{\dot{V}}_{in,g}}u_{o}\sqrt{\frac{r_{o}}{r_{f}}}}\]
\[u_{e} = \frac{u_{o}\frac{r_{o}}{{\overline{r}}_{e}}\ }{1 + \frac{\lambda_{s}}{2}\frac{A_{e1}}{0.9{\dot{V}}_{in,g}}u_{o}\sqrt{\frac{r_{o}}{{\overline{r}}_{e}}}}\]
\[u_{con} = \frac{u_{o}\frac{r_{o}}{{\overline{r}}_{con}}\ }{1 + \frac{\lambda_{s}}{2}\frac{A_{sed}}{0.9{\dot{V}}_{in,g}}u_{o}\sqrt{\frac{r_{o}}{{\overline{r}}_{con}}}}\]

Mass separation between main and secondary streams

\[n = \frac{\ln\frac{u_{f}}{u_{o}}}{\ln\frac{r_{o}}{r_{f}\ }}\]
\[{\dot{V}}_{\sec} = {\dot{V}}_{in,g}\left( 0.0497 + 0.0684n + 0.0949n^{2} \right)\]
\[w_{split} = 1 - \frac{{\dot{V}}_{\sec}}{{\dot{V}}_{in,g}}\]

Separation at wall due to exceeding the loading limit in main stream

\[{\overline{z}}_{e} = \frac{u_{e}u_{con}}{{\overline{r}}_{z}}\]
\[d_{main,l}^{*} = \sqrt{w_{50}\frac{18\eta_{visc}}{\left( \rho_{s} - \rho_{g} \right){\overline{z}}_{e}}}\]
\[\begin{split}k = \begin{cases} 0.81 & \mu_{in} < 2.2 \cdot 10^{- 5} \\ 0.15 + 0.66\exp\left( - \left( \frac{\mu_{in} - 2.2 \cdot 10^{- 5}}{0.015 - 2.2 \cdot 10^{- 5}} \right)^{0.6} \right) & 2.2 \cdot 10^{- 5} \leq \mu_{in} < 0.015 \\ 0.15 + 0.66\exp\left( - \left( \frac{0.1 - 0.015}{0.1 - \mu_{in}} \right)^{0.1}\left( \frac{\mu_{in}}{0.015} \right)^{0.6} \right) & 0.015 \leq \mu_{in} \leq 0.1 \\ 0.15 & \mu_{in} > 0.1 \\ \end{cases}\end{split}\]
\[\mu_{main} = K_{main}\left( \frac{d_{main,l}^{*}}{d_{50}} \right)\left( 10\mu_{in} \right)^{k}\]
\[\eta_{main,l} = 1 - \frac{\mu_{main}}{\mu_{in}}\]

Separation in the internal vortex of main stream

\[d_{main,v}^{*} = \sqrt{\frac{18\eta_{visc}0.9{\dot{V}}_{in,g}}{\left( \rho_{s} - \rho_{g} \right)u_{f}^{2}2\pi h_{sep}}}\]
\[\begin{split}\eta_{main,v}(d) = \begin{cases} 0 & \frac{d}{d_{main,v}^{*}} < D^{- 1} \\ 0.5\left\{ 1 + \cos\left\lbrack 0.5\pi\left( 1 - \frac{\log\left( \frac{d}{d_{main,v}^{*}} \right)}{\log D} \right) \right\rbrack\ \right\} & D^{- 1} \leq \frac{d}{d_{main,v}^{*}} \leq D \\ 1 & \frac{d}{d_{main,v}^{*}} > D \\ \end{cases}\end{split}\]

Separation at wall due to exceeding the loading limit in secondary stream

\[\begin{split}\mu_{\sec} = \begin{cases} 6\mu_{main} & \mu_{in} \geq 6\mu_{main} \\ \mu_{in} & \mu_{in} < 6\mu_{main} \\ \end{cases}\end{split}\]
\[\eta_{sec,l} = 1 - \frac{\mu_{\sec}}{\mu_{in}}\]

Separation at vortex finder of secondary stream

\[d_{sec,v}^{*} = \sqrt{\frac{18\eta_{visc}{\dot{V}}_{\sec}}{\left( \rho_{s} - \rho_{g} \right)\left( \frac{2}{3}u_{f} \right)^{2}2\pi h_{f}}}\]
\[\begin{split}\eta_{sec,v}(d) = \begin{cases} 0 & \frac{d}{d_{sec,v}^{*}} < D^{- 1} \\ 0.5\left\{ 1 + \cos\left\lbrack 0.5\pi\left( 1 - \frac{\log\left( \frac{d}{d_{sec,v}^{*}} \right)}{\log D} \right) \right\rbrack\ \right\} & D^{- 1} \leq \frac{d}{d_{sec,v}^{*}} \leq D \\ 1 & \frac{d}{d_{sec,v}^{*}} > D \\ \end{cases}, \text{with } D = 3\end{split}\]

Overall separation

\[\begin{split}\eta_{main}(d) = \begin{cases} \eta_{main,l} + \left( 1 - \eta_{main,l} \right)\eta_{main,v}(d) & \mu_{in} > \mu_{main} \\ \eta_{main,v}(d) & \mu_{in} \leq \mu_{main} \\ \end{cases}\end{split}\]
\[\begin{split}\eta_{\sec}(d) = \begin{cases} \eta_{sec,l} + \left( 1 - \eta_{sec,l} \right)\eta_{sec,v}(d) & \mu_{in} > \mu_{\sec} \\ \eta_{sec,v}(d) & \mu_{in} \leq \mu_{\sec} \\ \end{cases}\end{split}\]
\[\eta_{tot}(d) = \eta_{adj}\left( w_{split}\eta_{main}(d) + \left( 1 - w_{split} \right)\eta_{\sec}(d) \right)\]
\[{\dot{m}}_{s,out,s} = {\dot{m}}_{in,s}\sum_{d}^{}{R_{in}(d)\eta_{tot}(d)}\]
\[{\dot{m}}_{s,out,g} = 0\]
\[{\dot{m}}_{g,out,s} = {\dot{m}}_{in,s}\left( 1 - \sum_{d}^{}{R_{in}(d)\eta_{tot}(d)} \right)\]
\[{\dot{m}}_{g,out,g} = {\dot{m}}_{in,g}\]

Note

Notations:

Symbol

Units

Type

Description

\(\beta\)

[-]

Relative width of cyclone gas entry

\(\delta\)

[°]

UP

Angle of attack of blades in axial gas entry

\(\varepsilon\)

[°]

UP

Spiral angle in spiral gas entry

\(\lambda_{0}\)

[-]

UP

Wall friction coefficient of pure gas

\(\lambda_{s}\)

[-]

Wall friction coefficient of solids-containing gas

\(\mu_{in}\)

[kg/kg]

Solids loading at inlet

\(\mu_{main}\)

[kg/kg]

Threshold for solids loading in main stream

\(\mu_{\sec}\)

[kg/kg]

Threshold for solids loading in secondary stream

\(\eta_{adj}\)

[-]

UP

Separation efficiency adjustment factor

\(\eta_{main}\)

[-]

Overall separation efficiency in main stream

\(\eta_{main,l}\)

[-]

Separation efficiency due to exceeding of solids loading limit in main stream (from main stream to solids output)

\(\eta_{main,v}\)

[-]

Separation efficiency in internal vortex (from internal vortex to solids output)

\(\eta_{\sec}\)

[-]

Overall separation efficiency in secondary stream

\(\eta_{sec,l}\)

[-]

Separation efficiency due to exceeding of solids loading limit in secondary stream (from secondary stream to solids output)

\(\eta_{sec,v}\)

[-]

Separation efficiency at vortex finder (from vortex finder to solids output)

\(\eta_{tot}\)

[-]

Total separation efficiency of cyclone

\(\eta_{visc}\)

[Pa s]

MDB

Dynamic viscosity of gas at inlet

\(\rho_{g}\)

[kg/m3]

MDB

Gas density at inlet

\(\rho_{s}\)

[kg/m3]

MDB

Solids density at inlet

\(a\)

[m]

Height of blades channel in axial gas entry

\(A_{con}\)

[m2]

Lateral area of the conical part

\(A_{con/2}\)

[m2]

Lateral area of the top half of conical part

\(A_{cyl}\)

[m2]

Lateral area of the cylindrical part

\(A_{e1}\)

[m2]

Average wall area considered for the first revolution after entry

\(A_{f}\)

[m2]

Lateral area of vortex finder

\(A_{sed}\)

[m2]

Sedimentation area

\(A_{sp}\)

[m2]

Frictional area of the spiral in spiral gas entry

\(A_{top}\)

[m2]

Area of upper wall

\(A_{tot}\)

[m2]

Total wall friction area

\(b_{e}\)

[m]

UP/

Width of gas entry/blade channel

\(d\)

[m]

SP

Particle diameter

\(d_{50}\)

[m]

SP

Particle size median

\(d_{b}\)

[m]

UP

Thickness of blades in axial gas entry

\(d_{exit}\)

[m]

UP

Diameter of particles exit

\(d_{f}\)

[m]

UP

Diameter of vortex finder

\(d_{o}\)

[m]

UP

Outer diameter of cyclone

\(d_{main,l}^{*}\)

[m]

Cut size of separation on the first revolution due to exceeding the loading limit

\(d_{main,v}^{*}\)

[m]

Cut size of separation in internal vortex of main stream

\(d_{sec,v}^{*}\)

[m]

Cut size of separation at vortex finder in secondary stream

\(D\)

[-]

UP

Coefficient for grid efficiency curve calculation according to Muschelknautz

\(h_{con}\)

[m]

Height of the cone part of cyclone

\(h_{con,eff}\)

[m]

Effective height of the cone part of cyclone

\(h_{cyl}\)

[m]

UP

Height of the cylindrical part of cyclone

\(h_{e}\)

[m]

UP

Height of gas entry

\(h_{f}\)

[m]

UP

Height (depth) of vortex finder

\(h_{sep}\)

[m]

Height of separation zone

\(h_{tot}\)

[m]

UP

Total height of cyclone

\(k\)

[-]

Exponent for solids loading threshold in main stream

\(K_{main}\)

[-]

UP

Constant for solids loading threshold in main stream

\({\dot{m}}_{in,g}\)

[kg/s]

SP

Gas mass flow at inlet

\({\dot{m}}_{in,s}\)

[kg/s]

SP

Solids mass flow at inlet

\({\dot{m}}_{out,s,s}\)

[kg/s]

Solids mass flow at solids outlet

\({\dot{m}}_{out,s,g}\)

[kg/s]

Gas mass flow at solids outlet

\({\dot{m}}_{out,g,s}\)

[kg/s]

Solids mass flow at gas outlet

\({\dot{m}}_{out,g,g}\)

[kg/s]

Gas mass flow at gas outlet

\(n\)

[-]

Parameter for calculating secondary stream

\(N_{b}\)

[#]

UP

Number of blades in axial gas entry

\({\overline{r}}_{con}\)

[m]

Mean radius of the conical part

\(r_{core}\)

[m]

UP

Core radius of blades in axial gas entry

\(r_{e}\)

[m]

Radius of the middle gas streamline at gas entry

\({\overline{r}}_{e}\)

[m]

Mean radius of the gas streamline at gas entry

\(r_{exit}\)

[m]

Radius of the particles exit

\(r_{exit,eff}\)

[m]

Effective radius of the particles exit

\(r_{f}\)

[m]

Radius of vortex finder

\(r_{o}\)

[m]

Outer radius of cyclone

\({\overline{r}}_{z}\)

[m]

Reference mean radius

\(R_{in}(d)\)

[-]

Mass fraction of particles with size \(d\) at inlet

\(u_{con}\)

[m/s]

Tangential velocity at mean cone radius

\(u_{e}\)

[m/s]

Tangential velocity at gas streamline radius at gas entry

\(u_{f}\)

[m/s]

Tangential velocity at vortex finder

\(u_{o}\)

[m/s]

Tangential velocity at outer cyclone radius

\(v_{e}\)

[m/s]

Inlet velocity in the middle gas streamline at gas entry

\({\dot{V}}_{in,g}\)

[m3/s]

Gas volume flow at inlet

\({\dot{V}}_{\sec}\)

[m3/s]

Gas volume flow of secondary stream

\(w_{50}\)

[m/s]

Sinking speed at which 50% of particles are sedimented at wall

\(w_{split}\)

[-]

Fraction of material going to main stream

\({\overline{z}}_{e}\)

[m2/s]

Mean centrifugal acceleration along streamline

  • UP: User-defined model parameters

  • MDB: Value from materials database

  • SP: Value from the input stream

Note

Model parameters:

Name

Symbol

Units

Description

Values

d_o

\(d_{o}\)

[m]

Outer diameter of cyclone

≥0.01

h_tot

\(h_{tot}\)

[m]

Total height of cyclone

≥0.01

h_cyl

\(h_{cyl}\)

[m]

Height of the cylindrical part of cyclone

≥0.01

d_f

\(d_{f}\)

[m]

Diameter of vortex finder

≥0.01

h_f

\(h_{f}\)

[m]

Height (depth) of vortex finder

≥0.01

d_exit

\(d_{exit}\)

[m]

Diameter of particle exit

≥0.01

Entry shape

Gas entry shape

Rectangular slot/Full spiral/Half spiral/Axial

b_e

\(b_{e}\)

[m]

Width of gas entry

≥0.01

h_e

\(h_{e}\)

[m]

Height of gas entry

≥0.01

epsilon

\(\varepsilon\)

[°]

Spiral angle in spiral gas entry

[0…360]

N_b

\(N_{b}\)

[#]

Number of blades in axial gas entry

≥1

d_b

\(d_{b}\)

[m]

Thickness of blades in axial gas entry

≥0

r_core

\(r_{core}\)

[m]

Core radius of blades in axial entry

≥0

Blade shape

Blades shapes in axial gas entry

Simple straight/Curved/Curved and twisted

delta

\(\delta\)

[°]

Angle of attack of blades in axial gas entry

[15…30]

lambda_0

\(\lambda_{0}\)

[-]

Wall friction coefficient of pure gas

≥0

D

\(D\)

[-]

Coefficient for grid efficiency curve calculation according to Muschelknautz

[2…4]

K_main

\(K_{main}\)

[-]

Constant for solids loading threshold in main stream

[0.02…0.03]

eta_adj

\(\eta_{adj}\)

[-]

Separation efficiency adjustment factor

[0…1]

Plot

Whether to generate plots

YES/NO

See also

  • Muschelknautz, U. (2019). L3.4 Zyklone zum Abscheiden fester Partikel aus Gasen. In: Stephan, P., Kabelac, S., Kind, M., Mewes, D., Schaber, K., Wetzel, T. (eds) VDI-Wärmeatlas. Springer Reference Technik. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52989-8_91

  • A demostration file at Example Flowsheets/Units/Cyclone Muschelknautz.dlfw.