Cyclone

Solids-gas separation according to Muschelknautz

cyclone

Constant geometric parameters

r_{o} = 0.5d_{o}

r_{f} = 0.5d_{f}

r_{exit} = 0.5d_{exit}

b_{e} =
\begin{cases}
\text{user-defined} & \text{rect slot, full/half spiral entry} \\
r_{o} - r_{core}    & \text{axial entry}
\end{cases}

r_{e} =
\begin{cases}
r_{o} - 0.5b_{e} & \text{rect slot, axial entry} \\
r_{o} + 0.5b_{e} & \text{full spiral entry} \\
r_{o} & \text{half spiral entry} \\
\end{cases}

{\overline{r}}_{con} = 0.5\left( r_{o} + r_{exit} \right)

r_{exit,eff} =
\begin{cases}
r_{f} & r_{exit} \leq r_{f} \\
r_{exit} & r_{exit} > r_{f} \\
\end{cases}

\beta = \frac{b_{e}}{r_{o}}

h_{con} = h_{tot} - h_{cyl}

h_{con,eff} = \left( \frac{r_{o} - r_{exit,eff}}{r_{o} - r_{exit}} \right)h_{con}

h_{sep} = h_{cyl} + h_{con,eff} - h_{f}

a =
\begin{cases}
\text{-} & \text{rect slot, full/half spiral entry} \\
\sin(\delta)\frac{\pi\left( r_{o} + r_{core} \right)}{N_{b}} - d_{b} & \text{axial entry} \\
\end{cases}

A_{cyl} = 2\pi r_{o}h_{cyl}

A_{con} = \pi\left( r_{o} + r_{exit,eff} \right)\sqrt{h_{con,eff}^{2} + \left( r_{o} - r_{exit,eff} \right)^{2}}

A_{top} = \pi r_{o}^{2} - \pi r_{f}^{2}

A_{f} = 2\pi r_{f}h_{f}

A_{tot} =
\begin{cases}
A_{cyl} + A_{con} + A_{f} + A_{top} & \text{rect slot, axial entry} \\
A_{cyl} + A_{con} + A_{f} + A_{top} - \varepsilon r_{o}h_{e} & \text{full/half spiral entry} \\
\end{cases}

A_{con/2} = \pi\left( r_{o} + {\overline{r}}_{con} \right)\sqrt{\left( \frac{h_{con}}{2} \right)^{2} + \left( r_{o} - {\overline{r}}_{con} \right)^{2}}

A_{sed} = A_{cyl} + A_{con/2}

A_{e1} = \frac{2\pi r_{o}h_{e}}{2}

A_{sp} =
\begin{cases}
\text{-} & \text{rect slot, axial entry} \\
\varepsilon\left( \frac{b + 2r_{o}}{2}\left( b_{e} + h_{e} \right) \right) & \text{full spiral entry} \\
\varepsilon r_{o}\left( b_{e} + h_{e} \right) & \text{half spiral entry} \\
\end{cases}

Operational parameters

{\dot{V}}_{in,g} = \frac{{\dot{m}}_{in,g}}{\rho_{g}}

\mu_{in} = \frac{{\dot{m}}_{in,s}}{{\dot{m}}_{in,g}}

\lambda_{s} =
\begin{cases}
\lambda_{0}\left( 1 + 2\sqrt{\mu_{in}} \right) & \mu_{in} \leq 1 \\
\lambda_{0}\left( 1 + 3\sqrt{\mu_{in}} \right) & \mu_{in} > 1 \\
\end{cases}

\alpha =
\begin{cases}
\frac{1}{\beta}\left( 1 - \sqrt{1 + 4\left\lbrack \left( \frac{\beta}{2} \right)^{2} - \left( \frac{\beta}{2} \right) \right\rbrack\sqrt{1 - \frac{1 - \beta^{2}}{1 + \mu_{in}}\left( 2\beta - \beta^{2} \right)}} \right) & \text{rect slot, full/half spiral entry} \\
\begin{cases}
0.85 & \text{simple straight blades} \\
0.95 & \text{curved blades} \\
1.05 & \text{curved and twisted blades} \\
\end{cases} & \text{axial entry} \\
\end{cases}

Geometric parameters

{\overline{r}}_{e} = r_{o} - \frac{\alpha b_{e}}{2}

{\overline{r}}_{z} = \sqrt{{\overline{r}}_{e}{\overline{r}}_{con}}

Velocities

v_{e} =
\begin{cases}
{\dot{V}}_{in,g}/\left( b_{e}h_{e} \right) & \text{rect slot, full/half spiral entry} \\
{\dot{V}}_{in,g}/\left( ab_{e}N_{b} \right) & \text{axial entry} \\
\end{cases}

w_{50} = \frac{0.5\left( 0.9{\dot{V}}_{in,g} \right)}{A_{sed}}

u_{o} =
\begin{cases}
\frac{v_{e}\frac{r_{e}}{r_{o}}}{\alpha} & \text{rect slot entry} \\
\frac{v_{e}\frac{r_{e}}{r_{o}}}{1 + \frac{\lambda_{s}}{2}\frac{A_{sp}}{{\dot{V}}_{in,g}}v_{e}\sqrt{\frac{r_{e}}{r_{o}}}\ } & \text{full/half spiral entry} \\
\frac{v_{e}\cos(\delta)\frac{r_{e}}{r_{o}}}{\alpha} & \text{axial entry} \\
\end{cases}

u_{f} = \frac{u_{o}\frac{r_{o}}{r_{f}}}{1 + \frac{\lambda_{s}}{2}\frac{A_{tot}}{{\dot{V}}_{in,g}}u_{o}\sqrt{\frac{r_{o}}{r_{f}}}}

u_{e} = \frac{u_{o}\frac{r_{o}}{{\overline{r}}_{e}}\ }{1 + \frac{\lambda_{s}}{2}\frac{A_{e1}}{0.9{\dot{V}}_{in,g}}u_{o}\sqrt{\frac{r_{o}}{{\overline{r}}_{e}}}}

u_{con} = \frac{u_{o}\frac{r_{o}}{{\overline{r}}_{con}}\ }{1 + \frac{\lambda_{s}}{2}\frac{A_{sed}}{0.9{\dot{V}}_{in,g}}u_{o}\sqrt{\frac{r_{o}}{{\overline{r}}_{con}}}}

Mass separation between main and secondary streams

n = \frac{\ln\frac{u_{f}}{u_{o}}}{\ln\frac{r_{o}}{r_{f}\ }}

{\dot{V}}_{\sec} = {\dot{V}}_{in,g}\left( 0.0497 + 0.0684n + 0.0949n^{2} \right)

w_{split} = 1 - \frac{{\dot{V}}_{\sec}}{{\dot{V}}_{in,g}}

Separation at wall due to exceeding the loading limit in main stream

{\overline{z}}_{e} = \frac{u_{e}u_{con}}{{\overline{r}}_{z}}

d_{main,l}^{*} = \sqrt{w_{50}\frac{18\eta_{visc}}{\left( \rho_{s} - \rho_{g} \right){\overline{z}}_{e}}}

k =
\begin{cases}
0.81 & \mu_{in} < 2.2 \cdot 10^{- 5} \\
0.15 + 0.66\exp\left( - \left( \frac{\mu_{in} - 2.2 \cdot 10^{- 5}}{0.015 - 2.2 \cdot 10^{- 5}} \right)^{0.6} \right) & 2.2 \cdot 10^{- 5} \leq \mu_{in} < 0.015 \\
0.15 + 0.66\exp\left( - \left( \frac{0.1 - 0.015}{0.1 - \mu_{in}} \right)^{0.1}\left( \frac{\mu_{in}}{0.015} \right)^{0.6} \right) & 0.015 \leq \mu_{in} \leq 0.1 \\
0.15 & \mu_{in} > 0.1 \\
\end{cases}

\mu_{main} = K_{main}\left( \frac{d_{main,l}^{*}}{d_{50}} \right)\left( 10\mu_{in} \right)^{k}

\eta_{main,l} = 1 - \frac{\mu_{main}}{\mu_{in}}

Separation in the internal vortex of main stream

d_{main,v}^{*} = \sqrt{\frac{18\eta_{visc}0.9{\dot{V}}_{in,g}}{\left( \rho_{s} - \rho_{g} \right)u_{f}^{2}2\pi h_{sep}}}

\eta_{main,v}(d) =
\begin{cases}
0 & \frac{d}{d_{main,v}^{*}} < D^{- 1} \\
0.5\left\{ 1 + \cos\left\lbrack 0.5\pi\left( 1 - \frac{\log\left( \frac{d}{d_{main,v}^{*}} \right)}{\log D} \right) \right\rbrack\  \right\} & D^{- 1} \leq \frac{d}{d_{main,v}^{*}} \leq D \\
1 & \frac{d}{d_{main,v}^{*}} > D \\
\end{cases}

Separation at wall due to exceeding the loading limit in secondary stream

\mu_{\sec} =
\begin{cases}
6\mu_{main} & \mu_{in} \geq 6\mu_{main} \\
\mu_{in} & \mu_{in} < 6\mu_{main} \\
\end{cases}

\eta_{sec,l} = 1 - \frac{\mu_{\sec}}{\mu_{in}}

Separation at vortex finder of secondary stream

d_{sec,v}^{*} = \sqrt{\frac{18\eta_{visc}{\dot{V}}_{\sec}}{\left( \rho_{s} - \rho_{g} \right)\left( \frac{2}{3}u_{f} \right)^{2}2\pi h_{f}}}

\eta_{sec,v}(d) =
\begin{cases}
0 & \frac{d}{d_{sec,v}^{*}} < D^{- 1} \\
0.5\left\{ 1 + \cos\left\lbrack 0.5\pi\left( 1 - \frac{\log\left( \frac{d}{d_{sec,v}^{*}} \right)}{\log D} \right) \right\rbrack\  \right\} & D^{- 1} \leq \frac{d}{d_{sec,v}^{*}} \leq D \\
1 & \frac{d}{d_{sec,v}^{*}} > D \\
\end{cases}, \text{with } D = 3

Overall separation

\eta_{main}(d) =
\begin{cases}
\eta_{main,l} + \left( 1 - \eta_{main,l} \right)\eta_{main,v}(d) & \mu_{in} > \mu_{main} \\
\eta_{main,v}(d) & \mu_{in} \leq \mu_{main} \\
\end{cases}

\eta_{\sec}(d) =
\begin{cases}
\eta_{sec,l} + \left( 1 - \eta_{sec,l} \right)\eta_{sec,v}(d) & \mu_{in} > \mu_{\sec} \\
\eta_{sec,v}(d) & \mu_{in} \leq \mu_{\sec} \\
\end{cases}

\eta_{tot}(d) = \eta_{adj}\left( w_{split}\eta_{main}(d) + \left( 1 - w_{split} \right)\eta_{\sec}(d) \right)

{\dot{m}}_{s,out,s} = {\dot{m}}_{in,s}\sum_{d}^{}{R_{in}(d)\eta_{tot}(d)}

{\dot{m}}_{s,out,g} = 0

{\dot{m}}_{g,out,s} = {\dot{m}}_{in,s}\left( 1 - \sum_{d}^{}{R_{in}(d)\eta_{tot}(d)} \right)

{\dot{m}}_{g,out,g} = {\dot{m}}_{in,g}

Note

Notations:

Symbol

Units

Type

Description

\beta

[-]

Relative width of cyclone gas entry

\delta

[°]

UP

Angle of attack of blades in axial gas entry

\varepsilon

[°]

UP

Spiral angle in spiral gas entry

\lambda_{0}

[-]

UP

Wall friction coefficient of pure gas

\lambda_{s}

[-]

Wall friction coefficient of solids-containing gas

\mu_{in}

[kg/kg]

Solids loading at inlet

\mu_{main}

[kg/kg]

Threshold for solids loading in main stream

\mu_{\sec}

[kg/kg]

Threshold for solids loading in secondary stream

\eta_{adj}

[-]

UP

Separation efficiency adjustment factor

\eta_{main}

[-]

Overall separation efficiency in main stream

\eta_{main,l}

[-]

Separation efficiency due to exceeding of solids loading limit in main stream (from main stream to solids output)

\eta_{main,v}

[-]

Separation efficiency in internal vortex (from internal vortex to solids output)

\eta_{\sec}

[-]

Overall separation efficiency in secondary stream

\eta_{sec,l}

[-]

Separation efficiency due to exceeding of solids loading limit in secondary stream (from secondary stream to solids output)

\eta_{sec,v}

[-]

Separation efficiency at vortex finder (from vortex finder to solids output)

\eta_{tot}

[-]

Total separation efficiency of cyclone

\eta_{visc}

[Pa s]

MDB

Dynamic viscosity of gas at inlet

\rho_{g}

[kg/m3]

MDB

Gas density at inlet

\rho_{s}

[kg/m3]

MDB

Solids density at inlet

a

[m]

Height of blades channel in axial gas entry

A_{con}

[m2]

Lateral area of the conical part

A_{con/2}

[m2]

Lateral area of the top half of conical part

A_{cyl}

[m2]

Lateral area of the cylindrical part

A_{e1}

[m2]

Average wall area considered for the first revolution after entry

A_{f}

[m2]

Lateral area of vortex finder

A_{sed}

[m2]

Sedimentation area

A_{sp}

[m2]

Frictional area of the spiral in spiral gas entry

A_{top}

[m2]

Area of upper wall

A_{tot}

[m2]

Total wall friction area

b_{e}

[m]

UP/

Width of gas entry/blade channel

d

[m]

SP

Particle diameter

d_{50}

[m]

SP

Particle size median

d_{b}

[m]

UP

Thickness of blades in axial gas entry

d_{exit}

[m]

UP

Diameter of particles exit

d_{f}

[m]

UP

Diameter of vortex finder

d_{o}

[m]

UP

Outer diameter of cyclone

d_{main,l}^{*}

[m]

Cut size of separation on the first revolution due to exceeding the loading limit

d_{main,v}^{*}

[m]

Cut size of separation in internal vortex of main stream

d_{sec,v}^{*}

[m]

Cut size of separation at vortex finder in secondary stream

D

[-]

UP

Coefficient for grid efficiency curve calculation according to Muschelknautz

h_{con}

[m]

Height of the cone part of cyclone

h_{con,eff}

[m]

Effective height of the cone part of cyclone

h_{cyl}

[m]

UP

Height of the cylindrical part of cyclone

h_{e}

[m]

UP

Height of gas entry

h_{f}

[m]

UP

Height (depth) of vortex finder

h_{sep}

[m]

Height of separation zone

h_{tot}

[m]

UP

Total height of cyclone

k

[-]

Exponent for solids loading threshold in main stream

K_{main}

[-]

UP

Constant for solids loading threshold in main stream

{\dot{m}}_{in,g}

[kg/s]

SP

Gas mass flow at inlet

{\dot{m}}_{in,s}

[kg/s]

SP

Solids mass flow at inlet

{\dot{m}}_{out,s,s}

[kg/s]

Solids mass flow at solids outlet

{\dot{m}}_{out,s,g}

[kg/s]

Gas mass flow at solids outlet

{\dot{m}}_{out,g,s}

[kg/s]

Solids mass flow at gas outlet

{\dot{m}}_{out,g,g}

[kg/s]

Gas mass flow at gas outlet

n

[-]

Parameter for calculating secondary stream

N_{b}

[#]

UP

Number of blades in axial gas entry

{\overline{r}}_{con}

[m]

Mean radius of the conical part

r_{core}

[m]

UP

Core radius of blades in axial gas entry

r_{e}

[m]

Radius of the middle gas streamline at gas entry

{\overline{r}}_{e}

[m]

Mean radius of the gas streamline at gas entry

r_{exit}

[m]

Radius of the particles exit

r_{exit,eff}

[m]

Effective radius of the particles exit

r_{f}

[m]

Radius of vortex finder

r_{o}

[m]

Outer radius of cyclone

{\overline{r}}_{z}

[m]

Reference mean radius

R_{in}(d)

[-]

Mass fraction of particles with size d at inlet

u_{con}

[m/s]

Tangential velocity at mean cone radius

u_{e}

[m/s]

Tangential velocity at gas streamline radius at gas entry

u_{f}

[m/s]

Tangential velocity at vortex finder

u_{o}

[m/s]

Tangential velocity at outer cyclone radius

v_{e}

[m/s]

Inlet velocity in the middle gas streamline at gas entry

{\dot{V}}_{in,g}

[m3/s]

Gas volume flow at inlet

{\dot{V}}_{\sec}

[m3/s]

Gas volume flow of secondary stream

w_{50}

[m/s]

Sinking speed at which 50% of particles are sedimented at wall

w_{split}

[-]

Fraction of material going to main stream

{\overline{z}}_{e}

[m2/s]

Mean centrifugal acceleration along streamline

  • UP: User-defined model parameters

  • MDB: Value from materials database

  • SP: Value from the input stream

Note

Model parameters:

Name

Symbol

Units

Description

Values

d_o

d_{o}

[m]

Outer diameter of cyclone

≥0.01

h_tot

h_{tot}

[m]

Total height of cyclone

≥0.01

h_cyl

h_{cyl}

[m]

Height of the cylindrical part of cyclone

≥0.01

d_f

d_{f}

[m]

Diameter of vortex finder

≥0.01

h_f

h_{f}

[m]

Height (depth) of vortex finder

≥0.01

d_exit

d_{exit}

[m]

Diameter of particle exit

≥0.01

Entry shape

Gas entry shape

Rectangular slot/Full spiral/Half spiral/Axial

b_e

b_{e}

[m]

Width of gas entry

≥0.01

h_e

h_{e}

[m]

Height of gas entry

≥0.01

epsilon

\varepsilon

[°]

Spiral angle in spiral gas entry

[0…360]

N_b

N_{b}

[#]

Number of blades in axial gas entry

≥1

d_b

d_{b}

[m]

Thickness of blades in axial gas entry

≥0

r_core

r_{core}

[m]

Core radius of blades in axial entry

≥0

Blade shape

Blades shapes in axial gas entry

Simple straight/Curved/Curved and twisted

delta

\delta

[°]

Angle of attack of blades in axial gas entry

[15…30]

lambda_0

\lambda_{0}

[-]

Wall friction coefficient of pure gas

≥0

D

D

[-]

Coefficient for grid efficiency curve calculation according to Muschelknautz

[2…4]

K_main

K_{main}

[-]

Constant for solids loading threshold in main stream

[0.02…0.03]

eta_adj

\eta_{adj}

[-]

Separation efficiency adjustment factor

[0…1]

Plot

Whether to generate plots

YES/NO

See also

  • Muschelknautz, U. (2019). L3.4 Zyklone zum Abscheiden fester Partikel aus Gasen. In: Stephan, P., Kabelac, S., Kind, M., Mewes, D., Schaber, K., Wetzel, T. (eds) VDI-Wärmeatlas. Springer Reference Technik. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52989-8_91

  • A demostration file at Example Flowsheets/Units/Cyclone Muschelknautz.dlfw.